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Abstract – It is increasingly evident that carcinogenesis, in the vast majority of cancers, cannot be explained
simply through an accumulation of somatic mutations, or epigenetics, the stem cell theory, or the Warburg
effect. Here, decades of thinking based on incorrect assumptions has resulted in an incorrect hypothesis on
the origin of cancer. Many papers studying DNA, genetics, RNA, miRNA, proteomics, and epigenetics have
increased our understanding of biology. Our paradigm, though more complex, is more reliable and plausible.
It states that cancer originates from a disruption of homeostasis. This essential biological phenomenon, home-
ostasis, maintains the interrelationships of various signaling pathways and induced crosstalk which modify cel-
lular functions together with the interactions of surrounding cells and structures such that the equilibrium lies
towards the optimal health of the organism. This Special Issue “Disruption of signaling homeostasis induced
crosstalk in the carcinogenesis paradigm Epistemology of the origin of cancer” provides compelling evidence
that carcinogenesis is explained by a six-step sequence of events for the vast majority of cancers. These six steps
include, (1) a pathogenic stimulus followed by (2) chronic inflammation, from which develops (3) fibrosis with
associated remodeling in the cellular microenvironment. From these changes a (4) pre-cancerous niche develops
which triggers the deployment of (5) a chronic stress escape strategy, and when this fails to resolve, and (6) the
transition of a normal cell to a cancer cell occurs. This paradigm provides opportunities to move away from a
symptom-oriented understanding of cancer and is much closer to a cause-based understanding, which opens the
door for early preventative strategies to mitigate cancer as a disease, and to interdict metastases. This is under-
pinned by the fact that an independent recently published proof of this paradigm showed how a stimulus trigger
the proposed multi-sequence cascade of events as abrupt involution-induced chronic inflammation, followed by
fibrosis with remodeling, which describes the pre-cancerous niche followed by hyperplasia, metaplasia, and
cancer.
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Introduction

Cancer mortalities (e.g., breast cancer in Europe and
the USA) have declined largely due to the standardization
of cancer diagnosis and therapy algorithms, effective

surveillance programs, and more efficacious adjuvant ther-
apies [1]. However, we still cannot identify the root cause
(s) of cancer for some 80% of sporadic cancers as required
to shift away from the current symptomatic therapies to
more effective cause-based approaches.

The health-care market is well funded but the majority
of these monies are spent on symptom-orientated cancer
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research. The global cancer (research and treatment)
spending in 2015 was determined to be about $100 billion
[2] while the US government was spending about $6 billion
in 2018 on cancer research alone [3]. By comparison, Euro-
pean cancer research funding in 2012–2013 amounted
�€7.6 billion [4].

A primary suggestion to change focus in cancer research
to a cause- rather than a symptom-based strategy was pub-
lished between 2014 and 2016 [5–9].

Mutations, radiation, epigenetics, stem cells
and Warburg theory

Mutations

Mutations that are seen in liver tissues, but not in can-
cer, were associated with hepatocyte regeneration indepen-
dent of carcinogenesis [10]. This reveals that there is a
difference between correct observations, such as mutations,
and how their phenotypic diagnostic and therapeutic rele-
vance are evaluated. Importantly, to not mistake an associ-
ation as causal to cancer as has been the case for the past
seven decades. In a minority of cancers, mutations do
appear to be indispensable to cancer, but for example, even
in the majority of BRCA mutations these appear to be bio-
logically neutral [11]. Therefore, it becomes clearer that
“mutations – regardless of cause – may not be enough, even
if necessary, to cause many cancers” ([12] reviewed in [13]).

This example, among countless others, illustrates why
the value of the somatic mutation theory (SMT) as being
the cause for the majority of cancers is increasingly being
challenged [5, 6, 9, 14–34]. It does not help if such a “holy
grail” as the SMT is explained by stochastic models
[35–37]. It was noted that one cannot calculate either the
number of key mutations nor the susceptibility to cancer
in the general population using the statistical models
described [38].

It has been suggested that 20% of “healthy” adults may
carry disease-related mutations and that such mutations
could be identified by whole exome sequencing (WES)
[39]. However, it is noteworthy that only 17% of incidental
or secondary mutations identified by WES (n = 70)
revealed that only 7.1% of the variants detected could be
classified as pathogenic. Thus, there is a difference between
measured observations versus a disease phenotype or a
mutation that is biologically neutral [11].

The presence of somatic mutations in cancer has been
extensively reviewed [9]. Investigating the expression of pro-
teins involved in DNA repair and/or cell-cycle regulation,
such as tumor protein p53 (p53), phosphorylated p53
(phosphorylated at Ser15), epidermal growth factor recep-
tor (EGFR), ATM serine/threonine protein kinase
(ATM) (phosphorylated at Ser1981) and checkpoint kinase
2 (CHK2) (phosphorylated at Thr68) showed no predictive
value in esophageal squamous cell carcinoma (ESCC) [40].

It is important to note that ATM protein kinase is
recruited and activated by double strand breaks in DNA
[41]. Therefore, it seems to serve as a more likely explana-
tion for the lack of predictability of disease progression or

survival from the use of biomarkers involved in DNA repair
and/or cell-cycle regulation. Furthermore, extensive investi-
gations of more common biomarkers, such as carcinoembry-
onic antigen (CEA) and CA199 for colon cancer show a low
specificity and/or sensitivity [42] and suggests why the use
of spectrometry might be of greater help in this regard [43].

The hysteron proteron syllogism “reverses both temporal
and logical order and this syllogism occurs in carcinogenesis
and SMT: the first (somatic mutation) occurs only after the
second (onset of cancer) and, therefore, observed somatic
mutations in most cancers appear well after the early cues
of carcinogenesis are in place” [9]. Mutations do occur in
cancerous tissue but the observed mutations and/or epige-
netic and/or genetic changes in advanced cancer tissues
have been consistently misinterpreted to suggest that muta-
tions are causative for the majority of cancers. Where are
the time series data that show a few mutations, then more
mutations, until we see cancer develop? We consider that
“somatic mutations are epiphenomena or later events occur-
ring after carcinogenesis is already underway” [9]. The fact
that a one-inch sample of cancerous liver tissue contains
more than 100 million mutations [44], that identical muta-
tions can result in different phenotypes [45], and analyses of
physiologically healthy cells in the human esophagus reveal
high levels of genetic alterations without cancer [46] makes
it unlikely that such somatic mutations could be the cause
for the vast majority of cancers [9].

It should be mentioned that even the mutation para-
digm in Alzheimer’s disease (AD) was recently questioned
[47] and a paradigm shift away from mutations as causal
to AD was proposed [48]. It is plausible that just by random
chance alone mutation-induced AD is around 5% [49] as it
is for cancer [5, 9].

With regard to somatic mutations and cancers, scien-
tists should not persist in trying to fit an opinion or belief
against reliable evidence to the contrary. We need to recog-
nize, (1) “there are larger amounts of cell-free DNA in
patients with late stage disease and metastasis”, (2) the
origin of the deoxyribonucleic acid (DNA) detected in
fluids from cancer patients is uncertain and, so far, (3) there
“is no evidence whether this DNA originates from dying
“normal” cells or from cancer cells or from both” [5].

Radiation

Radiation is “the” stereotypical example in support of
the primacy of mutations as being causative in cancer but
a closer examination suggests that even for radiation-
induced cancers a more nuanced view might be helpful.
For example, the DNA damage caused by the A-bombs
in Nagasaki and Hiroshima were different [9]. A low linear
energy transfer (low-LET) radiation, which primarily
causes single-strand DNA damage, was used in Nagasaki.
Single-strand DNA damage can be repaired by DNA repair
enzymes using the intact strand as a template and this
explains why the dose-response curve for leukemia in Naga-
saki A-bomb survivors was S-shaped, a dose-response curve
which also applies for most non-carcinogenic chemicals and
for pharmaceuticals ([50] reviewed in [9]). In contrast, the
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ionizing radiation from the A-bomb dropped on Hiroshima
was of high linear energy transfer (high-LET) type causing
mostly double-strand breaks in DNA and resulting in a
more linear dose-response curve. This is because in the Hir-
oshima survivors, the DNA repair enzymes had no template
to use to repair the damaged double strand DNA ([51]
reviewed in [9]). These data explain why different leukemia
incidence rates were observed with different dose-response
curves after the two different A-bombs in Hiroshima and
Nagasaki. Children with the autosomal recessive condition,
Xeroderma pigmentosum (XP), have defective DNA repair
enzymes [52, 53] and illustrate why “only agents that cause
double-strand DNA breakage become clinically relevant ” [9].

Epigenetics

Epigenetic changes can result in hypermethylation
which can silence tumor suppressor genes during carcino-
genesis [8, 54, 55] as shown in gastric cancer [56, 57] and
in Helicobacter-driven gastric MALT lymphomas [58].

A step-wise loss of multiple protective barriers
against CpG island hypermethylation was touted as being
crucial to carcinogenesis since unique epigenetic changes
were observed to occur at different steps in the progression
of cancers [8]. Various viruses and bacteria induce CpG
island methylation [57–63]. Both hypermethylation and
hypomethylation “are independent processes and appear
to play different roles in colorectal tumor progression” [64].

Chronic inflammation induces promoter CpG island
methylation in cancer [62, 63, 65–67]. This is significant
in that our old “belief ” that epigenetic alterations occur only
mitotically and meiotically heritable changes is no longer
correct.

Clinicians are challenged by rare small bowel adenocar-
cinomas (SB-AC) due to their rareness and non-specific
long-standing symptoms which may explain why SB-AC
present in locally advanced tumor categories [68–70]. Inves-
tigating the prevalence of hypermethylation rates in a panel
of mismatch repair gene human mutL homolog 1, colon
cancer, nonpolyposis type 2 (hMLH1), hyperplastic polypo-
sis 1 (HPP1), alternate reading frame tumor suppressor
protein (p14ARF, p14ARF), cyclin-dependent kinase inhibi-
tor 2A, multiple tumor suppressor 1 (p16INK4A, p16), and
adenomatous polyposis coli (APC) were considered to have
evolved during carcinogenesis in SB-AC with no differences
in anatomical location but higher rates of HPP1 hyperme-
thylation in advanced tumor categories versus early tumor
categories (pT1/2 categories) were observed [71]. Interest-
ingly, male patients showed a three-fold higher APC hyper-
methylation than females. Comparing the results against
gastric adenocarcinomas revealed higher rates of hyperme-
thylation in HPP1 and p16INK4A in SB-AC without differ-
ences in hMLH1 and p14ARF suggested epigenetic
differences between these tumor entities.

Subsequently, it was shown that the majority of spo-
radic cancers, usually diagnosed in advanced tumor cate-
gories, show more varied epigenetic alterations [72]. It
remains possible, however, that methylated free-circulating
DNA, such as HPP1 DNA, might serve as an early marker

in colorectal cancer (CRC) patients who are transitioning
to metastasis [73].

It has been pointed out that “we have epigenetic changes
as a subset of gene regulatory changes (i.e., self-perpetuat-
ing changes) and in the older Waddington sense we could
refer to all developmental gene regulation (including signal-
ing) as “epigenetic.” But in neither case is it correct to refer
to nucleosome modifiers as epigenetic” and “the important
point is to attend to how things actually work” [74]. Further-
more, epigenetic changes are “important in the recruitment
and regulation of the natural cellular engineering processes
that are involved in DNA repair and the control of transpo-
sition and recombination” as “natural selection and natural
genetic engineering overrule gene flow, evolving divergent
ecological adaptive complexes” ([75] reviewed in [76]).

Paired-box genes (PAX) represent a family of transcrip-
tion factors which encode proteins with DNA-binding motif
and a paired domain (PD). They are classified into four
major groups: group 1 (PAX1, PAX9), group 2 (PAX2,
PAX5, PAX8), group 3 (PAX3, PAX7), and group 4
(PAX4, PAX6) [77–79]. After the discovery of homeobox
gene by Walter Gehring ([80–82] reviewed in [83]), he dis-
covered that PAX6 (aniridia type II protein, AN2, paired
box 6) is responsible for eye development in fruit flies [84,
85]. Since then it has been shown that PAX6 has three iso-
forms and that it is important for embryogenesis of various
tissues [86–89]. Subsequently, the potential association
between PAX6 and cancer was investigated.

PAX6 is involved in normal corneal wound healing with
its upregulation [90]. Otherwise, PAX6 overexpression is
associated with poorer survival in invasive ductal breast
cancer [91]. Increase of hypermethylation of tumor sup-
pressing PAX6 was found to be associated with cancers of
the prostate [92, 93], breast [94–97], stomach [98, 99], brain
[100], and the colorectum [101]. Hepatitis C virus (HCV)
positive hepatocellular carcinoma (HCC) tissue frequently
(>60%) showed methylated PAX6, which rarely occurred
in hepatitis B virus (HBV) positive HCC tissues [102].
Interestingly, the methylation rates of various genes are
higher in HCV-HCC compared to normal tissue or HBV-
HCC [103].

However, hypermethylation status should be evaluated
with caution as it is necessary to know if this is found in
normal tissue and we know that hypermethylation in can-
cer does not always involve promoter-associated CpG-
islands. Moreover, methylation increases with age [8, 104,
105]. With regard to PAX6, silencing by methylation was
found to be increased in tumor versus normal tissue and
associated with poor survival in non-small lung cancer
[106]. PAX6 overexpression increases cell migration in
breast cancer, which seems to be affected by the methyla-
tion status, and increases matrix metalloproteinase 2
(MMP-2, gelatinase A) and matrix metalloproteinase 9
(MMP-9, gelatinase B), both of which are important for
carcinogenesis and metastasis while the promoter methyla-
tion of PAX6 has a negative impact on cell spread and pro-
teases expression [97].

Physical interactions between PAX6, transforming
growth factor beta 1 (TGF-b1), and secreted protein acidic
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and rich in cysteine (SPARC) have been demonstrated by
co-immunoprecipitation (Co-IP) assay in retinal layers
but the TGF-b regulation here seems to be PAX6-depen-
dent in a tissue-specific manner [107]. However, data in
terms of the PAX6 association with various biomarkers
and cancer are missing.

Stem cells

The transition from adult mesenchymal stem cells
depends on homeostasis and its disruption of the extracellu-
lar matrix (ECM) with various transcription factors and
cytokines ([108] reviewed in [9]). Even epithelial mesenchy-
mal transition (EMT) itself can induce non-cancer stem
cells to become stem cells ([109, 110] reviewed in [111]).
“If a cancer arises in a single stem cell, then the spontaneous
mutation rate would account for less than one mutation per
tumor ” [2]. The suggestion that “mutator phenotype” theory
would explain how a large number of mutations could pos-
sibly be generated [112] was proven to be incorrect as
reviewed above [11].

Warburg effect and cancer

As reviewed [113], Warburg and Cori observed that lac-
tic acid is produced by cancer cells from the activation of
anaerobic glycolysis [114–118]. To better understand how
this led to a postulation that the majority of cancers would
develop from anaerobic glycolysis we need to take a step
back.

The metabolic physiology of oxidation goes back some
250 years [119–125]. It was the German chemist and phys-
iologist, Max Rubner (1854–1932), who showed that food
ingestion increases oxidation and is dependent on specific
foods with higher rates for meat compared to fat or sugar –
and it was Rubner who postulated that metabolism is direc-
tionally proportional to the surface area of the body, known
as the Surface Law [126–134].

Later it was shown, that “increased acidity leads to
decreased oxidation” [135]. Rabbits exposed to high car-
bon dioxide and normal oxygen in the atmosphere showed
stimulation of the cardiorespiratory systems without bone
marrow hyperplasia but with a hydropic parenchymal
degeneration in some organs especially in the liver, with a
more peripheral location. Low oxygen content stimulated
the cardiorespiratory system together with a marked hyper-
plasia of red bone marrow, spleen and the thyroid together
with a low rate of more central hyaline cell degeneration of
parenchymatous tissue of organs and necrosis. This was
concordant to prior findings [136].

Furthermore, it was assumed that vegetarians would
have lower incidences of chronic diseases, such as cancer,
but it was proven, that vegetarians and non-vegetarians
have similar all-cause mortality including for cancer
[137–139] although this seems to be dependent on the type
of cancer [140, 141].

Warburg and Cori’s observations were significant to our
understanding of biology. However, glycolysis is “known to
be common among developing or regenerating tissues,

whether normal or neoplastic, and the tricarboxylic acid
(TCA) cycle to be basically intact in neoplastic tissues”
([142] reviewed in [113]).

The above discussion suggests that the majority of
cancers are unlikely to have originated from mutations,
radiation, epigenetics, stem cells, or the Warburg effect.

Independent proof of cancer paradigm “Epistemology
of the origin of cancer” – Complexity in animal model

A recent paper demonstrated how a pathogenic stimu-
lus induces the multi-sequence cascade of events we pro-
posed that includes abrupt involution-induced chronic
inflammation, followed by fibrosis with remodeling, which
describes the pre-cancerous niche (PCN) followed by hyper-
plasia, metaplasia, and cancer [143]. That this study was
conducted without prior knowledge of our paradigm and
without citing our previously published papers adds sup-
port for our paradigm.

Synopsis of evidence

The explanation as to how cancer cells originate is
complex. It involves ubiquitous proteins [144] developing
from an ongoing pathogenic stimulus with unresolved
chronic inflammation [145]. This, in turn, results in fibrosis
with its remodeling and generation of the PCN [146]. The
PCN promotes ongoing chronic cell matrix stress resulting
in the normal cell-to-cancer cell transition [111]. This
sequence is influenced by the microbiome [147], its modula-
tion by Metformin [148] as well as the metabolism of eicosa-
noids [149] and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-jB) signaling [150] all of which
have been described in considerable detail in this Special
Issue.

However, we acknowledge that the complexity of
various sequences and specific conditions that must be
considered [113].

Chronic inflammation evoked by pathogenic stimulus

The available information in regard to chronic inflam-
mation evoked by pathogenic stimulus during carcinogene-
sis was extensively discussed [145] and further supported by
more recent data. For example, some 25% of patients
asymptomatic for benign prostatic hyperplasia (BPH) were
positive for Trichomonas vaginalis (T. vaginalis) and an
even higher percentage exhibited seropositivity against
antibodies [151]. Thus, the findings of T. vaginalis in asso-
ciation with normal and prostatic tissues from chronic
inflammatory prostatitis, BPH, and prostate cancer [152]
may be more important than previously believed as one
source of an ongoing pathogenic stimulus (T. vaginalis
exposure) induces chronic inflammation within the prostate
in an experimental model [153] with increases of interleukin
1 beta (IL-1b) and chemokine (C-C motif) ligand 2 (CCL2)
in a time-dependent manner leading to the transition from
a normal cell to a cancer cell [154]. Chronic T. vaginalis
infection creates the microenvironment conducive to cancer
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development [155, 156]. Likewise, it has been shown that
consistent chronic lung inflammation results in metaplasia
and cancer [157].

This is concordant with findings on how a pathogenic
stimulus in epidermal cells induces inflammation and, when
unresolved, can lead to carcinogenesis [158] or to precancer-
ous hyperplasia and endometrial cancer [159]. Even breast
cancer shows such a sequence as when pathogenic stimuli,
such as (HPV) type 6/11 and 16/18 infections, are followed
by fibrosis with its remodeling increases the risk of such can-
cers [160].

Cell communication, mechanotransduction
and eicosanoid metabolism

The mechanotransduction recorded in cell-cell and –

stroma communication has been extensively reviewed
together with the undervalued ubiquitous proteins and eico-
sanoid metabolism [6, 144, 149]. This alone once again sup-
ports the notion that there is no such thing as “the” and/or
“one” Achilles’ Heel in cancer or carcinogenesis.

In lung cancer, the ECMprotein, fibronectin, is increased
and stimulated by the lipoxygenase metabolite of arachi-
donic acid, 12(steoreoisomer)-hydroxyeicosatetraenoic acid
(12(S)-HETE), but not by 12(“R” stereoisomer)-hydroxyei-
cosatetraenoic acid (12(R)-HETE), 5-hydroxyeicosatetrae-
noic acid (5-HETE) or 15-hydroxyeicosatetraenoic acid
(15-HETE, (5Z,8Z,11Z,13E)-15-hydroxyicosa-5,8,11,13-
tetraenoic acid) [161]. Fibronectin is increased by TGF-b1
[162] in more aggressive cancers in the stroma but not in
the tumor cells themselves [163]. Otherwise, fibronectin
was reported in the 80s as not being a useful marker as it
wasnot increased in cancer cells [164]. It should be noted that
the cancer cells were the focus of studies in the 80s and begin-
ning of the 90s, not the stroma, which explains why the role
of fibronectin was previously undervalued.

Fibronectin protects lung cancer cells against
chemotherapy induced apoptosis [165]. Culturing human
ovarian cancer cells (OVCAR-3, A2780/CP70) with fibro-
nectin increases signaling regulation of the focal adhesion
kinase (FAK) pathway (phosphorylated phosphoinositide
3-kinase (pPI3K)/phosphorylated phosphorylated protein
kinase B (pAKT) with the ability to migrate and invade
tissue which can be inhibited by FAK siRNA [166]:
fibronectin plays a role in metastasis as well.

Cluster of differentiation 44 (CD44) is increased by
pathogenic stimulus in carcinogenesis and also increased
by chronic TGF-b1 [111]. Targeting glioblastoma cells
expressing CD44 with liposomes encapsulating doxoru-
bicin was reported to suppress tumor growth [167]. CD44
induces integrin-mediated signaling for increasing adhesion
to facilitate extravasation and increases adhesion to fibro-
nectin which enables cancer cells to adhere more efficiently
[168]. Therefore, it is currently thought that targeting
fibronectin may be helpful in cancer therapy and also in
cancer imaging [169].

Focal adhesion kinase (FAK) and the protein, paxillin,
promote migration and adhesion to fibronectin [170].
Paxillin is increased in various lesions, such as hyperplasia,

dysplasia, metaplasia, and cancers [171] and connects inte-
grin to FAK [172].

PAX6 is under investigation in embryogenesis [86–89,
173, 174]. However, transcription factors can be differently
expressed viz., neuroblasts in the human subventricular
zone showed increased Sox-2 expression in the nuclear
region, whereas PAX6 immunoreactivity was detectable
in both the nucleus and the cytoplasm [175]. The cell adhe-
sion integral membrane molecule, L1, consists of six Ig
domains together with five fibronectin types, three repeats,
and a cytoplasmic domain [176]. Here a binding site for
homeodomain and PAX proteins is necessary for L1 adhe-
sion [177].

More detailed mechanistic information was recently pro-
vided for PAX6: the transcription factor PAX6 binds on
zinc finger E-box-binding homeobox 2 (ZEB2) and upregu-
lates PI3K/Akt signaling with E-Cadherin decrease down-
regulating apoptosis in lung cancer [178]. Detailed
information about lysyl oxidase (LOX), or its isoforms, with
PAX6 signaling are warranted. PAX6 was shown to
increase MMP-2 and MMP-9 [97], both of which are impor-
tant for the degradation and destruction of the ECM [9].
Furthermore, co-expression of PAX6 and C-X-C chemokine
receptor 4 (CXCR4) was shown in pancreatic cancer [179],
although here the mechanistic interactions are presently not
known.

Fibrosis with its remodeling and generation
of the precancerous niche (PCN)

Inducing the precancerous niche (PCN) in its entirety
reveals how carcinogenesis can occur [146]. In this context,
the influence by the microbiome and obesity, and the role of
Metformin are discussed [147] along with the different
influences by various NF-jB signaling pathways [150]
which all have been reviewed extensively. New reports
suggest that Metformin can reverse the mesenchymal
phenotype of primary breast cancer cells through signal
transducer and activator of transcription 3 (STAT3)/
NF-jB pathways [180].

As reported [146], the copper-dependent amine oxidases
of the LOX its isoforms and receptors, together with the
study of cancer-resistant species such as the naked mole
rat or Spalax are relevant. The LOX family consists of
LOX, lysyl oxidase-like protein 1–4 (LOXL1, LOXL2,
LOXL3, and LOXL4) and these are important for ECM
stiffness, stabilization [181], as well as for its remodeling
with altered signaling during carcinogenesis [146]. LOX
have a pivotal role in TGF-b1-induced carcinogenesis as
well as in cutaneous fibrosis through impaired ECM home-
ostasis in skin-like tissues [182].

LOXL3 is key regulator of integrin signaling and known
to oxidize fibronectin to augment the signal transduction
adaptor protein, phosphorylated Paxillin, which appears
to be an essential step for matrix formation [183].

The extracellular LOXL3 is expressed in the cytoplasm
in melanoma and kidney cells ([184, 185] reviewed in [181])
but predominantly translocated to the nucleus as
was observed in gastric cancer ([186] reviewed in [181]).
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It may be relevant that LOXL3 in humans presents “poten-
tial transcription factor binding sites for STAT3, signal
transducer and activator of transcription 6 (STAT6),
serum response factor (SRF) muscle integrin binding pro-
tein (MIBP)/regulatory factor X1 (RFX1), specificity pro-
tein 1 (SP1), nuclear factor 1 (NF1), neuron-restrictive
silencer factor (NRSF, RE1-silencing transcription factor,
REST), cAMP response element (CRE)-binding protein 1
(CREB), PAX-6 paired domain, interferon regulatory fac-
tor (IRF)-related protein, GATA binding factor 1, NF-jB,
GAGA box, proto-oncogene c-Rel (c-Rel) sites, and activat-
ing protein 2 (AP-2)” ([187] reviewed in [181]).

Chronic cell matrix stress resulting in the
normal-to-cancer cell transition

“In biology, the transition of one cell type to another and
the transition from one cell function to another is incom-
pletely understood mechanistically, but within the context
of embryogenesis and morphogenesis is acknowledged as a
physiologically routine event ” [111]. Catenin delta-1
(p120) regulates lung fibroblast differentiation induced by
TGF-b1 [188]. Chronic cell matrix stress increases p120
within the cytoplasm, and destabilizes epithelial cadherin
1 (E-Cadherin, CAM 120/80), which explains why apopto-
sis is inhibited under these conditions [189, 190]. A central
role for p120 in chronic cell stress response was also shown
in drosophila [191]. However, p120 and its isoforms 1 and
3 (p120-1 and p120-3) are differently expressed in epithelial
tissues [192].

During carcinogenesis, the disruption of p120 homeosta-
sis is relevant as p120 isoform 1 promotes transition cell
invasiveness while isoform 3 inhibits both [193] which
makes it more complex as the effects of p120 depend on
its isoforms. The obstacle of cell transition increases that
complexity as intermediate cell states have been identified
[194]. Although there is hope that influencing cell transition
could be used in treating disease [195], much work needs to
be done to first fill in the gaps in our knowledge.

We acknowledge the complexity illustrated by lipid
metabolism as discussed below.

Disruption of lipid metabolism

The homeostasis of pro- and anti-inflammatory effects
during carcinogenesis is disrupted in multiple ways, which
reveal why the focus on any one signaling pathway will
not suffice to interrupt carcinogenesis.

One important aspect lies in fatty acidmetabolismwhich
results in various intra- and extracellular mediators [149] with
pro-inflammatory effects, such as prostaglandins, such as
prostaglandin G2 (PGG2, (Z)-7-[(1S,4R,5R,6R)-5- [(E,3S)-
3-hydroperoxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-
6-yl]hept-5-enoic acid) and prostaglandin H2 (PGH2,
(Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-
2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid,
leukotrienes (LTs), such as leukotriene A4 (LTA4, 4-
[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-
2-yl]butanoic acid), leukotriene B4 (LTB4, (5S,6Z,8E,10E,

12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid),
leukotriene C4 (LTC4, (5S,6R,7E,9E, 11Z, 14Z)-6-[(2R)-2-
[[(4S)-4-amino-4-carboxybutanoyl]amino]3-(carboxymeth
ylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-
tetraenoic acid), leukotriene E4 (LTE4, (5S,6R,7E,9E,
11Z,14Z)-6-[(2R)-2-amino-2-carboxyethyl]sulfanyl-5-hydroxy-
icosa-7,9,11,14-tetraenoic acid), leukotriene D4 (LTD4,
(5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-3-(carboxymethy-
lamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetrae-
noic acid) andanti-inflammatory specializedpro-resolving lipid
mediators (SPMs), such as lipoxines (LXs), such as lipoxin A4
(LXA4, 5S,6R,15S-trihydroxy-7E,9E, 11Z,13E-eicosatetrae-
noic acid), lipoxin B4 (LXB4, 5S, 14R,15S-trihydroxy-
6E,8Z,10E,12E-eicosatetraenoic acid), resolvins (RVs), such
as resolvin D1 (RvD1, (4Z,7S,8R, 9E,11E,13Z,15E,17S,
19Z)-7,8,17-trihydroxydocosa-4,9,11, 13,15,19-hexaenoic
acid), resolvin D2 (RvD2, (4Z,7S,8E, 10Z,12E,14E,
16R,17S,19Z)-7,16,17-trihydroxydocosa-4,8,10, 12,14,19-hex-
aenoic acid), resolvin D3 (RvD3, (4S,5E, 7E,9E,13Z,
15E,17R,19Z)-4,11,17-trihydroxydocosa-5,7,9,13, 15,19-
hexaenoic acid), resolvin D4 (RvD4, (4S,6E,8E, 10E,
13E,15Z,17S,19Z)-4,5,17-trihydroxydocosa-6,8,10,13,15, 19-
hexaenoic acid), resolvin D5 (RvD5, (5Z,7S,8E,10Z,13Z,
15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexae-
noic acid), and resolvin D6 (RvD6, (4S,5E,7Z,
10Z,13Z, 15E,17S,19Z)-4,17-dihydroxydocosa-5,7,10,13,15,
19-hexaenoic acid), such as neuroprotectin D1 (NPD1,
protectin D1, (4Z,7Z,10R,11E,13E,15Z,17S,19Z)-10,17-
dihydroxydocosa-4,7,11,13,15,19-hexaenoic acid), andmare-
sins, such as maresin 1 (MaR1, (4Z,7R,8E,10E,12Z,14S,
16Z,19Z)-7,14- dihydroxydocosa-4,8,10,12,16,19-hexaenoic
acid) and maresin 2 (MaR2, 13R,14S-diHDHA).

Noticeable within fatty acid (FA) metabolism is the
homeostasis between synthesis in the cytoplasm and the
endoplasmic reticulum in humans (and plastids in plants)
while FA degradation takes place within the mitochondria,
peroxisomes, and glyoxosomes [196–201].

Humans consume predominantly six common edible
saturated FA, such as hexadecanoic acid (palmitic acid),
(9Z)-hexadec-9-enoic acid (palmitoleic acid), octadecanoid
acid (stearic acid, cetylacetic acid), cis-9-octadecenoic acid
(oleic acid), linoleic acid (LA, cis, cis-9,12-octadecadienoic
acid) and a-linolenic acid (ALA, (9Z,12Z,15Z)-octadeca-
9,12,15-trienoic acid) [149, 202, 203].

Fatty acid precursors such as ALA are converted to the
more pro-inflammatory n-6 polyunsaturated fatty acid
(omega-6-, x-6-PUFAs: C20H32O2, 20:4(x-6)), such
as dihomo gamma-linolenic acid (DGLA), arachidonic acid
(AA), docosatetranoic acid, (7Z,10Z,13Z,16Z)-7,10,13, 16-
docosatetraenoic acid (DTA) and osbond acid, (All-Z)-
4,7,10,13,16-docosapentaenoic acid (BDPA), and through
LA into the less inflammatory n-3 polyunsaturated fatty
acids (omega-3-,x-3-PUFAs), such as eicosatetraenoic acid,
all-cis-8,11,14,17-eicosatetraenoic acid (ETA), eicosapen-
taenoic acid, (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-
pentenoic acid (EPA), docosapentaenoic acid, 7,10,13,16,
19-docosapentaenoic acid (DPA) and docosahexaenoic acid,
(4Z,7Z,10Z,13Z, 16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic
acid (DHA).
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Key reaction in biosynthesis of PUFA is desaturation
[203–205]. Enzymes transfer electrons from one molecule
to another and desaturate the substrate by adding a double
bond. FA with double bonds are essential and need to be
ingested in food because specialized desaturases are missing.
So-called D-desaturases are classified in regard to the double
bond position counting from the methyl end, e.g. delta-9,
delta-6 and delta-5 types ([206, 207] reviewed in [208]).

In the following we will not focus on the bacterial desat-
urase (DesA), cyanobacterial DesA, which is important
for cooling tolerance. Lipid membranes are temperature-
dependent based on the grade of saturation [209] and
specialized FA can generate an increased tolerance against
cold temperatures in higher plants [210]. Instead we will
focus on stearoyl-CoA desaturase-1 (SCD1) and fatty acid
desaturase 2 (FADS2).

Stearoyl-CoA desaturase-1 (SCD1) = �-9
desaturase (D9D)

Stearoyl-CoA desaturase-1 (SCD1) [206, 211–214] is a
D-9 desaturase (D9D). SCD1 is essential for the de-novo
triglyceride biosynthesis [215]. Mono-unsaturated fatty
acids (MUFA), such as oleic acid and palmitoleic acid are
substrates for various lipid syntheses, such as triglycerides
(TGs), wax esters, cholesterol esters and phospholipids. In
importance, next to various cell communication molecular
pathways [6, 149] is the ratio of saturated to unsaturated
FA in the phospholipids as this influences the stability
and fluidity of membranes and thus influences signal trans-
duction [216]. SCD1-expression influences the membrane
phospholipid composition.

SCD1-deficiency is associated with reduced obesity and
decreased liver steatosis independent of peroxisome prolifer-
ator-activated receptor-alpha (PPARa) [217]. Deficiency of
SCD1 also results in reduced arteriosclerosis [218], adiposity
[217, 219], adipose tissue associated inflammation [220, 221]
inhibits glycogen synthase kinase 3 (GSK3) phosphoryla-
tion, and decreases b-catenin translocation to the nucleus
with consecutive decrease of cell proliferation and cell
transition in breast cancer cells [222]. Therefore, SCD1
inhibitors hold the promise of being targets in anticancer
therapy [223].

The mediator of increased hepatic FA oxidation in
SCD1-deficiency is the phosphorylation and activation of
AMP-activated protein kinase (AMPK) which act like a
metabolic sensors [224]. Pharmacological SCD1 inhibition
inactivates acetyl-CoA carboxylase via AMPK and impairs
proliferation in lung cancer cells [225]. SCD1 is positively
regulated by insulin [226] and vitamin A [227] and sup-
pressed by triiodothyronine (T3) [228]. In obesity, leptin
decreases SCD1-independent of insulin [229] and insulin
activates SCD1 expression through PI3K and the mechanis-
tic target of rapamycin (mTOR) as well as the downstream
transcription factors nuclear factor Y (NF-Y) and sterol
regulatory element-binding protein 1 (SREBP-1) [230].

PI3K/mTOR signaling upregulates SCD1 [231–233].
Furthermore, EGFR binds and phosphorylates SCD1 and

cancer cell growth stimulated by EGFR depends on
SCD1 activity [234]. SCD1 controls cancer metabolism as
well as proliferation and cell-survival through EGFR/
Akt/extracellular signal-regulated kinase (ERK) signaling
[235]. SCD1 decreases apoptosis, increases proliferation,
and metastasis-related EGFR/PI3K/Akt signaling plus
up-regulation of epithelial to mesenchymal transition
(EMT) phenotype in lung cancer, which could be restored
by SCD1 inhibition. In this case, SCD1 inhibition is
required for anti-EGFR therapy in lung cancer [236].

NF-jB [150] upregulates SCD1 at the transcriptional
level [237]. SCD1 inhibition also blocks NF-jB signaling
and downregulates interleukin 6 (IL-6) but the exact signal-
ing pathway remains to be elucidated. Furthermore, the
degree of disruption of homeostasis is important as only
moderate activation of inhibitor of nuclear factor kappa-B
kinase 2 (IKK2, inhibitor of nuclear factor kappa-B kinase
subunit beta, IKK-b)-NF-kB in unstressed adult mouse
liver cells seems to induce lipogenesis and to be cytoprotec-
tive without apparent inflammation and fibrosis [238]. This
appears to be related to the strong activation of the anti-
inflammatory IKK1-RelB alternative NF-kB pathway.
Knockdown of SCD1 by shRNA reduced the mRNA
expression of aldehyde dehydrogenase 1 family member
A1 (ALDH1A1), the homeobox protein Nanog, sex deter-
mining region Y (SRY)-box 2 (Sox2), and octamer-binding
transcription factor 4 (Oct-4) [237].

Angiotensin II (ANGII) promotes the formation of mul-
ticellular spheroids (MCS) and peritoneal metastasis
through EGFR transactivation and activation of its recep-
tor, angiotensin II receptor type 1 (AGTR1, AT1-receptor),
increases the lipid desaturation via SCD1 upregulation
explaining why high AGTR1 levels are associated with poor
outcomes in ovarian cancer [239].

Cancer cells usually have a much higher proliferation
rate than normal cells and require a higher proportion of
PUFA for their cell membranes as well as for the formation
and stabilization of cell membranes ([240] reviewed in
[241]). Fibroblasts [242] and SV40-triggered transformed
fibroblasts upregulate SCD1 [243].

Increased SCD1 is associated with cancers and cell lines
of the breast [244, 245], ovarian [246], hypopharynx [240],
thyroid [247], esophagus [248], colon [248–250], liver [248,
251, 252], the lung [241, 253–255], kidney [256], and the
prostate [257] as well as in melanoma [258].

Sapienate and fatty acid desaturase 2 (FADS2) =
�-6-desaturase (D6D) (Fig. 1)

The unique and abundant MUFA, sapienic acid (sapi-
enate) is the most abundant FA in human sebum and
among hair-bearing animals ([259] reviewed in [260]). Sapi-
enate is an intermediate product of saturated palmitate to
cis-8-octadeconoate [261]. FADS2 is a D-6-desaturase
(D6D) [260, 262–264] and was identified in human seba-
ceous glands where it converts palmitate into the MUFA,
sapienate [260].

More recently it was shown that FADS2 signaling is
used by cancer cells to produce sapienate as an alternate
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Figure 1. Simplified scheme of fatty acid desaturase 2 (FADS2) = x-6-desaturase (D6D) signaling in the disruption of signaling
homeostasis induced crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” consisting of a six-step sequence
(1) a pathogenic stimulus followed by (2) chronic inflammation from which develops (3) fibrosis with associated remodeling of the
cellular microenvironment; and from these changes a (4) precancerous niche (PCN), a product of fibrosis, with remodeling by
persistent inflammation, develops which triggers the deployment of (5) a chronic stress escape strategy and when this fails resolve it by
(6) normal cell to cancerous cell transition (NCCCT) by PCN-induced cell matrix stress occurs. This figure was published as original
illustration in paper 3 of this Special Issue – Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm
“Epistemology of the origin of cancer” entitled “Chronic inflammation evoked by pathogenic stimulus during carcinogenesis” [145].
Furthermore, we point out, that to the complexity of the content of the Special Issue the original and/or modified version of the
original illustration was republished within the following papers of the Special Issue: paper 5 “Microbiome and morbid obesity increase
pathogenic stimulus diversity” [147], paper 6 “Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic
inflammation” [146], paper 7 “Metformin alters signaling homeostasis” [148], paper 8 “Transition from normal to cancerous cell by
precancerous niche (PCN) induced chronic cell-matrix stress” [111] and paper 9 “NF-kB signaling and crosstalk during carcinogenesis”
[150]. Nomenclature Figure 1: The nomenclature common abbreviations are bold, followed by the common trivial names (if available)
and (if available) by the name in accordance to the International Union of Pure and Applied Chemistry (IUPAC): FADS2: fatty acid
desaturase 2, = x-6-desaturase (D6D); PPARa: peroxisome proliferator-activated receptor-alpha; PUFA: polyunsaturated fatty
acids; PCN: precancerous niche; CSES: chronic stress escape strategy; NCCCT: normal cell to cancerous cell transition; SphK:
sphingosine kinase isoform; S1P: sphingosine-1-phosphate; IL-6: interleukin 6; IL-8: interleukin 8; TNFa: tumor necrosis factor
alpha; IFNc: interferon gamma; ALOX: lipoxygenase, arachidonate lipoxygenase; ALOX12: 12-lipoxygenase, 12-LOX, 12S-LOX,
arachidonate 12-lipoxygenase 12S type; ALOX5: 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE: 12-hydro-
xyeicosatetraenoic acid; LTA4: leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]butanoic acid;
LTB4: leukotriene B4, (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid; LTC4: leukotriene C4,
(5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-[[(4S)-4-amino-4-carboxybutanoyl]amino]-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydro-
xyicosa-7,9,11,14-tetraenoic acid; LTD4: leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-3-(carboxymethylamino)-3-oxo-
propyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid; LTE4: leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-2-
carboxyethyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid; 5-oxo-ETE: (6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoic acid;
Cox: cyclooxygenase; Cox-1: cyclooxygenase 1; Cox-2: cyclooxygenase 2; Cox-3: isoform of Cox-2 (therefore in brakes); PGG2:
prostaglandin G2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroperoxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid;
PGH2: prostaglandin H2, (Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid;
PGFF2a: prostaglandin F2 alpha, (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid;
PGD2: prostaglandin D2, (Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoic acid; PGE2:
prostaglandin E2, (Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid; MDA:
malondialdehyde, propanedial; TXA2: thromboxane A2, (Z)-7-[(1S,2S,3R,5S)-3-[(E,3S)-3-hydroxyoct-1-enyl]-4,6-dioxabicyclo
[3.1.1]heptan-2-yl]hept-5-enoic acid; CYP*: cytochrome P450 isoforms; 20-OH-PGE2: 20-hydroxy prostaglandin E2; 20-HETE:
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metabolic pathway which the cells (ab)use it for membrane
synthesis of cancer cells [265]. In accordance with a
Figure published in this Special Issue [145], the FADS2
signaling fits in well with the thinking detailed in this
Special Issue (Fig. 1).

Transcriptional coactivator yes-associated protein
(YAP) (Fig. 2)

Another recent publication used heat maps generated by
RNA transcriptomes and green fluorescent protein–
labeled (GFP+)B16F10markedmelanomacells formetabo-
lomic analysis. This study revealed that cancer cells use the
production of bile acids in lymph node metastasis and a
metabolic shift through transcriptional coactivator, yes-
associated protein (YAP), as amechanism to spread through
lymph nodes [266]. It was shown, that inhibitingmammalian
target of rapamycin complex 1 (mTORC1) results in the
inhibition of YAP and its transcriptional coactivator with
PDZ-binding motif (TAZ)-mediated liver cancer develop-
ment [267]. Also, as shown in a figure published in this Spe-
cial Issue [145], the YAP signaling fits well into our overall
thought process discussed in this Special Issue (Fig. 2). Here,
YAP can have ambivalent effects on apoptosis [268, 269].

A challenge in the future of science and cancer research
will be using new technologies to develop specific anticancer
therapies, which are not going to be easy as widely por-
trayed because of the need to integrate multi-sequence
strategies to mitigate the disruption of homeostasis.

Scope of new technologies

There is an expectation that imaging at the molecular
and atomic levels will provide new insights into cancer.
The identification of virus particles at the atomic level,
decoded by X-ray laser, was recently reported for the first
time [270]. Imaging correction and enhancement by soft-
ware of time-lapse microscopy will make previously
hidden developmental steps in cells visible in time [271].
Magnetic nanoparticle magnetic resonance imaging (MRI)
using ferumoxytol non-invasively visualized pancreatic
inflammation in Type-1 diabetics [272] and nanomedicine
technology might be a reliable tool to better understand
physicochemical characteristics for use in the development

of cancer pharmaceuticals [273]. Future mRNA imaging
might also provide information for visualizing biochemical
reactions which may create new opportunities for research
[274]. For instance, such imaging tools might provide for
a deeper understanding of our immune system and its inter-
play with various cell types, cytokines, and biochemical
signaling.

The following signaling and crosstalk pathways might
be elucidated using nano-imaging: immune cells promote
activation and nuclear localization of inhibitor of nuclear
factor kappa-B kinase 1 (IKK1, inhibitor of nuclear factor
kappa-B kinase subunit alpha, IKK-a) in prostatic epithe-
lial tumor cells which can result into the suppression of mas-
pin leading to metastasis [275, 276].

N-methyl-D-aspartate receptors (NMDA) are gluta-
mate-gated cation channels with high calcium permeability
playing roles in the biology of higher organisms [277].
Inhibiting NMDA by dextromethorphan (DXM) was
shown to result in enhanced serum insulin concentrations
and improved glucose tolerance [278]. The NF-jB signaling
and its influence by Metformin has been reviewed [150,
180]. A better and more complete understanding of Met-
formin’s role in crosstalk pathways in diabetes could result
in potential therapeutic use of Metformin against specific
targets in certain cancers.

Pharmacological modulators of cation (calcium, sodium,
potassium) and anion-permeable channels might impact
cancer treatments [279] and pharmacogenomics might help
further optimize patient sub-selection so as to better predict
responses to cancer therapy [280].

The theory suggested to engineer gene-driven systems
by Burt [281] and the discovery of the bacterial nuclease
system named clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated protein 9
(Cas9) [282] resulted in the false hope that cut-and-paste
of any DNA sequence might cure any and all mutation-
caused disease. As a cautionary tale, Chamber et al.
revealed that rapid resistance to CRISPR gene engineering
occurs, often in a single generation [283]. The editorial of
the Journal was titled “The gene drive bubble: New realities”
[284] to remind the scientific community about the neces-
sity that such new technologies should be used with an
abundance of caution and with realistic expectations of
what they can and cannot deliver.

J
Figure 1. (continued) 20-hydroxyeicosatetraenoic acid, (5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid; SOX: [sex-
determining region Y (Sry) box-containing] transcription factor family; IL-b1: interleukin beta 1; IL-33: interleukin 33; ROS:
reactive oxygen species;CXCCC: chemokine receptors; aSMAD: alpha-smooth muscle actin;miR21: micro RNA-21; p300: protein
300 (p300-CBP coactivator family); SP1: specificity protein 1; AP1: activator protein 1; E2F4/5: cytoplasmic complex of Smad3,
retinoblastoma-like protein 1 (P107, RBL1), E2F4/5 and D-prostanoid (DP1); p107: retinoblastoma-like protein 1, RBL1; TGFb:
transforming growth factor beta; Pro-MMP-9: pro-matrix metalloproteinase 9; Pro-MMP-1: pro-matrix metalloproteinase 1;
Pro-MMP-7: pro matrix metalloproteinase 7; SNAIL: zinc finger protein SNAI1; MMP-1: matrix metalloproteinase 1; MMP-7:
matrix metalloproteinase 7; MMP-2: matrix metalloproteinase 2; E-Cadherin: CAM 120/80 or epithelial cadherin, cadherin-1,
epithelial cadherin; CXCL1: chemokine (C-X-C motif) ligand 1; Osm: oncostatin-M; PI3K: phosphatidylinositide 3-kinase;
FOXO3a: forkhead box protein O3a; p120: catenin delta-1, protein 120; Rho: Ras homolog gene family, member A; Rac1: Ras-
related C3 botulinum toxin substrate 1; cdc42: cell division control protein 42 homolog; BIM: Bcl-2 interacting mediator of cell
death; PUMA: BH3-only protein; CXCR4: C-X-C motif of chemokine receptor 4; cdk2: cyclin-dependent kinase 2; LOXL3: lysyl
oxidase homolog 3; mTORc1: rapamycin complex 1; PAI1: Plasminogen activator inhibitor-1.
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Figure 2. Simplified scheme of transcriptional coactivator yes-associated protein (YAP) signaling in the disruption of signaling
homeostasis induced crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer” consisting of a six-step sequence
(1) a pathogenic stimulus followed by (2) chronic inflammation from which develops (3) fibrosis with associated remodeling of the
cellular microenvironment; and from these changes a (4) precancerous niche (PCN), a product of fibrosis, with remodeling by
persistent inflammation, develops which triggers the deployment of (5) a chronic stress escape strategy and when this fails resolve it by
(6) normal cell to cancerous cell transition (NCCCT) by PCN-induced cell matrix stress occurs. This figure was published as original
illustration in paper 3 of this Special Issue – Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm
“Epistemology of the origin of cancer” entitled “Chronic inflammation evoked by pathogenic stimulus during carcinogenesis” [145]
[Chronic inflammation 4open 2019]. Furthermore, we point out, that to the complexity of the content of the Special Issue the
original and/or modified version of the original illustration was republished within the following papers of the Special Issue: paper 5
“Microbiome and morbid obesity increase pathogenic stimulus diversity” [147], paper 6 “Precancerous niche (PCN), a product of
fibrosis with remodeling by incessant chronic inflammation” [146], paper 7 “Metformin alters signaling homeostasis” [148], paper 8
“Transition from normal to cancerous cell by precancerous niche (PCN) induced chronic cell-matrix stress” [111] and paper 9 “NF-kB
signaling and crosstalk during carcinogenesis” [150]. Here, YAP can have ambilavent effects on apoptosis [268, 269] why the
connection between YAP and apoptosis ends at the stroke within the illustration with a rhombus. Nomenclature Figure 2: The
nomenclature common abbreviations are bold, followed by the common trivial names (if available) and (if available) by the name in
accordance to the International Union of Pure and Applied Chemistry (IUPAC): YAP: yes-associated protein; PCN: precancerous
niche; CSES: chronic stress escape strategy; NCCCT: normal cell to cancerous cell transition; SphK: sphingosine kinase isoform;
S1P: sphingosine-1-phosphate; IL-6: interleukin 6; IL-8: interleukin 8; TNFa: tumor necrosis factor alpha; IFNc: interferon gamma;
ALOX: lipoxygenase, arachidonate lipoxygenase; ALOX12: 12-lipoxygenase, 12-LOX, 12S-LOX, arachidonate 12-lipoxygenase 12S
type; ALOX5: 5-lipoxygenase, 5-LOX, arachidonate 5-lipoxygenase; 12-HETE: 12-hydroxyeicosatetraenoic acid; LTA4:
leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]butanoic acid; LTB4: leukotriene B4,
(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoic acid; LTC4: leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-
[[(4S)-4-amino-4-carboxybutanoyl]amino]-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-7,9,11,14-tetraenoic acid;
LTD4: leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicosa-
7,9,11,14-tetraenoic acid; LTE4: leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-2-carboxyethyl]sulfanyl-5-hydroxyicosa-
7,9,11,14-tetraenoic acid; 5-oxo-ETE: (6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoic acid; Cox: cyclooxygenase; Cox-1:
cyclooxygenase 1; Cox-2: cyclooxygenase 2; Cox-3: isoform of Cox-2 (therefore in brakes); PGG2: prostaglandin G2, (Z)-7-
[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroperoxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid; PGH2: prostaglandin H2,
(Z)-7-[(1S,4R,5R,6R)-5-[(E,3S)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid; PGFF2a: prostaglandin
F2 alpha, (Z)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid; PGD2: prostaglandin
D2, (Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoic acid; PGE2: prostaglandin E2,
(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid; MDA: malondialdehyde, propane-
dial; TXA2: thromboxane A2, (Z)-7-[(1S,2S,3R,5S)-3-[(E,3S)-3-hydroxyoct-1-enyl]-4,6-dioxabicyclo[3.1.1]heptan-2-yl]hept-5-enoic
acid; CYP*: cytochrome P450 isoforms; 20-OH-PGE2: 20-hydroxy prostaglandin E2; 20-HETE: 20-hydroxyeicosatetraenoic acid,
(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoic acid; SOX: [sex-determining region Y (Sry) box-containing] transcription
factor family; IL-b1: interleukin beta 1; IL-33: interleukin 33; ROS: reactive oxygen species; CXC CC: chemokine receptors;
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Developing targeted therapy not
as easy as advertised

Tacrolismus (FK506) binding protein 5 (FKBP51) is a
51 kDA chaperon molecule and an endogenous cytosolic
peptidyl-prolyl isomerase counted among the immunophilin
protein family [285, 286] with others [287, 288]. Immunophi-
lins had been described as receptor molecules for immuno-
suppressive drugs, such as cyclophilin 40 (CyP40),
FK506-binding proteins FKBP51 and FK506-binding pro-
tein 4 (FKBP52), protein phosphatase 5 (PP5), and heat
shock protein 90 (Hsp90) [289]. Its involvement in various
signaling pathways and in diseases is incompletely under-
stood at present but there is hope that an anti-FKB51 tar-
geted therapy could be helpful for some diseases [290] but
would need to be evaluated carefully in terms of potential
effects on the signaling pathways in carcinogenesis because
potential secondary adverse signaling effects could be
created.

FKBP51 is associated with autophagy, psychiatric dis-
orders, and diabetes. Experiments with cultured cells and
FKBP51 knockdown mice showed that FKBP51 is involved
in priming autophagy signaling and intracellular complexes
and is actively required for setting the groundwork for
antidepressants to work on the brain as evidenced by the
observation that lacking FKBP51 in a mouse model abol-
ished the antidepressant effects [291]. FKBP51 is associated
with diabetes as it antagonizes the increase of phosphoryla-
tion of Akt substrate of 160 kDa (AS160), glucose trans-
porter type 4 (GLUT-4) expressions at the plasma
membrane, and glucose uptake in skeletal myotubes [292].
Blocking FKBP51 could result in reducing or preventing
diabetes as decreased FKBP51 levels are associated with
reduced glucose intolerance and with maintaining or restor-
ing metabolic homeostasis.

Anti-FKB51 targeting can also cause unwanted adverse
effects. The role of glycogen synthase kinase 3b (GSK-3b) in
carcinogenesis has been previously reviewed [146]. Inhibit-
ing GSK-3b in glioblastoma cells is associated with induc-
tion of apoptosis and decrease of cell proliferation in vitro
and in vivo [293]. However, there is a potential FKBP51/
GSK-3b interaction in cancer. FKBP51 increases the phos-
phorylation of GSK-3b at serine 9 (pGSK-3bS9) through its
FK1 domain and also modifies GSK-3b’s heterocomplex
formation via protein phosphatase 2 (PP2, PP2A) and

the cyclin-dependent kinase 5 (cell division protein kinase
5, CDK5) resulting in the inhibition of GSK-3b [294].

If FKBP51 could be blocked on a long-term basis, this
might result in a pro-carcinogenic effect, as GSK-3b would
be blocked, if to a lesser degree. We presume that potential
anti-FKBP51 therapy approaches in diabetes and/or psy-
chiatry would need to be evaluated carefully in terms of
potential effects on the signaling pathways in carcinogene-
sis. Trying to correct the disruption of homeostasis on one
side could well result in adverse signaling effects elsewhere.

Anti-fibrotic strategies

Helpful protocols to extract and assay LOX enzymes
from tissue samples, cell culture cell layers, and media in
the multifunctional LOX family have recently been pub-
lished [295]. LOXL2 crosslinks collagen by mediating oxida-
tive deamination of lysine residues [296, 297]. LOXL2
promotes dedifferentiation in PyMT tumor-derived cells
together with reduced or delocalized E-cadherin [298].
LOXL2 was associated with increased levels of zinc finger
protein SNAI1 (Snail) and various cytokines. Additionally,
it was concluded that LOXL2 might be necessary for metas-
tasis and facilitates the formation of PCN or metastatic
niche formation by triggering the myeloid progenitor
CD11b+/Gr1+ cell population but that this effect was
independent “of its potential ability to modify ECM stiffness
and collagen organization”. LOXL2 represses the canonical
Notch homolog 1 (Notch1) pathway and correlates nega-
tively in premalignant tumors [299].

Fibrosis was shown to be attenuated by “combined inhi-
bition of LOXL2 and TGF-b type I receptor (TbRI) activ-
ities by trihydrophenolics” [300]. Blocking LOXL2 in
thioacetamide (TAA)-induced fibrosis showed attenuation
of both parenchymal and biliary fibrosis as well as reversal
of fibrosis [301].

Uterine fibroids are seen as non-cancerous growths [302]
with a low risk of 0.96% out of 229,536 adult women having
unexpected uterine cancer [303]. An anti-fibrotic approach
using atorvastatin which inhibits cell proliferation in a dose
and time-dependent manner plus stimulating apoptosis by
inducing caspase-3 activation, up-regulating Bcl-2 interacting
mediator of cell death (Bim) and down-regulating B-cell lym-
phoma 2 (Bcl-2) and suppressing phosphorylation of ERK1/
2 and c-Jun N-terminal kinase (JNK) was reported [304].

J
Figure 2. (continued) aSMAD: alpha-smooth muscle actin; miR21: micro RNA-21; p300: protein 300 (p300-CBP coactivator
family); SP1: specificity protein 1; AP1: activator protein 1; E2F4/5: cytoplasmic complex of Smad3, retinoblastoma-like protein 1
(P107, RBL1), E2F4/5 and D-prostanoid (DP1); p107: retinoblastoma-like protein 1, RBL1; TGFb: transforming growth factor
beta; Pro-MMP-9: pro-matrix metalloproteinase 9; Pro-MMP-1: pro-matrix metalloproteinase 1; Pro-MMP-7: pro matrix
metalloproteinase 7; SNAIL: zinc finger protein SNAI1; MMP-1: matrix metalloproteinase 1; MMP-7: matrix metalloproteinase 7;
MMP-2: matrix metalloproteinase 2; E-Cadherin: CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin; CXCL1:
chemokine (C-X-C motif) ligand 1; Osm: oncostatin-M; PI3K: phosphatidylinositide 3-kinase; FOXO3a: forkhead box protein O3a;
p120: catenin delta-1, protein 120; Rho: Ras homolog gene family, member A; Rac1: Ras-related C3 botulinum toxin substrate 1;
cdc42: cell division control protein 42 homolog; BIM: Bcl-2 interacting mediator of cell death; PUMA: BH3-only protein; CXCR4:
C-X-C motif of chemokine receptor 4; cdk2: cyclin-dependent kinase 2; LOXL3: lysyl oxidase homolog 3; mTORc1: rapamycin
complex 1; PAI1: Plasminogen activator inhibitor-1.
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Inhibiting AGTR1 with losartan, in combination with
the chemotherapy regime FOLFIRINOX (F-NOX), in
locally advanced pancreatic cancer resulted in higher com-
plete macroscopic and microscopic cancer resection rates
(R0-resections) [305]. Using losartan in pancreatic ductal
adenocarcinoma mice treated with losartan (70 mg/kg) or
saline (control vehicle) showed an increase of fractional
blood volume and vessel size index plus an increase in the
intratumoral uptake of 18Fluor-labelled 5-fluorouracil
(18F-5FU) by 53% in micro-positron emission tomography
(PET) [306]. The application of the monoclonal antibody
simtuzumab failed to provide evidence of a therapeutic
effect in idiopathic pulmonary fibrosis [307]. We consider
that this is related to the existence of various alternative
splicing isoforms [308] that could explain why a monoclonal
antibody to LOXL2 alone might not result into the neces-
sary clinical anti-fibrotic effect.

In this regard it may be relevant that intranasal losar-
tan decreases perivascular beta amyloid, chronic inflamma-
tion, and the decline of neurogenesis in hypertensive rats
[309]. Even in AD, and other chronic diseases the sequences
of pathogenic stimulus followed by unresolved chronic
inflammation and fibrosis are important.

The stroma of human pancreatic tumors expresses the
vitamin D receptor (VDR) and treatment with a vitamin
D3 derivative “the VDR ligand calcipotriol markedly
reduced markers of inflammation and fibrosis in pancreati-
tis and human tumor stroma” with an improvement in gem-
citabine responsiveness [310]. To our knowledge, there are

no ongoing and/or planned cancer trials combining anti-
fibrotic agents together with calcipotriol and/or anti-
inflammatory agents.

Although our current understanding is limited, it would
be of interest to know how the quantity of cross-links
occurs, as well the “cross-links-types” and how these influ-
ence the stroma and the subsequent fate of tumor [300,
311, 312].

In vivo studies in two complementary genetic mouse
models with mammary gland specific deletion or overex-
pression of LOXL2 in the PpMT breast cancer model have
yielded promising results. The PpMT model mimics many
processes found in human breast cancer progression gener-
ating highly aggressive tumors that metastasize to the lung
within 3–4 months [313]. LOXL2 deletion in primary
tumors resulted in a dramatic decrease of lung metastases
while its overexpression produced increased lung metastases
[298].

Cautiously optimistic

We may have overestimated the importance of signaling
in experiments in so far as static measurements cannot
reveal what occurs over long periods. “Recognition of risk
markers that reliably predict disease” is considered impor-
tant for early cancer screening [314] but methodological
approaches need to be taken into account: different signal-
ing markers have different levels to be measured at different

Figure 3. Cancer burden in regard to homeostasis and the disruption of signaling homeostasis induced crosstalk in the carcinogenesis
paradigm “Epistemology of the origin of cancer”. Explanation numbers: A tumor nodule is reported to be first detectable by X-ray
imaging when it has 107 cells [330] which was earlier 108 cells [331]. The average number of cells in a tumor when it is first palpable was
reported to be 109 cells in 2002 [331] which approximately accounts for a tumor with 1g [332]. As it was also reported to be 106 cells in
1943 [333], we decided to decrease this number for the illustration by 1 log only to 108 cells.
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locales within the tumor microenvironment, as for example
CK18 at 2 cm sites was higher than at the 5 cm site [315]. In
addition, disease itself may induce secondary changes in the
expressions of potential biomarkers as was shown in hyper-
tension-induced elevation of connexin 45 (Cx45), and which
may affect communication between vascular smooth muscle
cells (VSMCs) [316]. The disruption of homeostasis reveals
itself through many different facets.

Investigating solid materials at around �243 �C using
an ultrasound laser pulse revealed that atoms re-arrange
themselves within 350 billionths of a second [317]. Further-
more, an as yet unrecognized helix dissociation pathway
which occurred within milliseconds was recently reported
[318]. mRNA imaging needs to consider the following:
80% of RNAs have a median half-life of “around 2 min”
and some 20% for between 5 and 20 min [319]. RNA col-
lected over the last few decades did not discriminate
between RNA separated and collected within 2 min versus
between 5 and 20 min or even longer. Quality surrogate
variable analysis (qSVA) in RNA-seq as a framework for
removing confounding by RNA quality and replication
resulted in a three-fold (300%) improvement in replication
compared with previous approaches [320].

Summary (Figs. 3–5)

This Special Issue “Disruption of signaling homeostasis
induced crosstalk in the carcinogenesis paradigm ‘Episte-
mology of the origin of cancer’ ” [111, 113, 144–150] pro-
vides evidence that the six-step sequence [5, 6] of events
explains carcinogenesis for some 80% of all cancers. This
sequences include (1) a pathogenic stimulus followed by
(2) chronic inflammation, from which develops (3) fibrosis
with associated remodeling in the cellular microenviron-
ment. From these changes a (4) pre-cancerous niche devel-
ops, which triggers the deployment of (5) a chronic stress
escape strategy, and when this fails to resolve, and (6) the
transition of a normal cell to a cancer cell occurs. These
six steps, and the detailed analysis provided in this Special
Issue, show that cancer originates, at its essence, from a dis-
ruption of homeostasis, the biological phenomenon that
maintains cellular function within a given range that defines
health.

Although underpinned by many observations including
a recent case-control study showing that exposure to bovine
leukemia virus is linked to human breast cancer [321], the
complexity of signaling and crosstalk is vast as re-activation

Figure 4. Cancer research strategies and cancer burden within the Disruption of signaling homeostasis induced crosstalk in the
carcinogenesis paradigm “Epistemology of the origin of cancer”. Explanation numbers: A tumor nodule is reported to be first detectable
by X-ray imaging when it has 107 cells [330] which was earlier 108 cells [331]. The average number of cells in a tumor when it is first
palpable was reported to be 109 cells in 2002 [331] which approximately accounts for a tumor with 1g [332]. As it was also reported to
be 106 cells in 1943 [333], we decided to decrease this number for the illustration by 1 log only to 108 cells.
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of latent subclinical inflammation can occur [322]. This may
also explain why radiotherapy, after complete tumor resec-
tion, can trigger a future PCN and subsequent cancer.

The significance of these findings is evidenced from data
that show that retroviruses can create endogenous forms on
infiltration into the germline cells of their hosts as the ances-
tor leukemia delta retrovirus group found in bats are
between 20 and 45 million years old [323]. There is little
doubt that our understanding of signaling pathways in nat-
ure and biology is incomplete. However, this may be viewed
in light of the fact that some 99.9% of all somatic mutations
that occur within the coding regions of the genome are not
fully understood [8, 9].

Furthermore, despite anti-vaccine options eliminating
the primary pathogenic stimulus, it is now better appreci-
ated that “curing” cancer by one therapy will not occur in
the near future and that multi-step anti-cancer treatments
will be necessary. This is underpinned by the knowledge
and evidence in regard to therapies, such as reversion of
Helicobacter pylori (H. pylori) induced chronic gastric
inflammation and metaplasia which can be accomplished
by eradication as a 10-year-follow-up study showed [324,
325].

Additionally, vaccines and anti-fibrotic options have
been extensively reviewed. However, to focus on fibrosis
alone is not enough. For some 100 years, we have known
that there is an inverse ratio of the rate of growth of connec-
tive tissue to animal age and a larger amount of connective
tissue is produced in young animals and humans which were
reproducible for cultured fibroblasts [326–328]. This knowl-
edge needs to be considered in any anti-fibrosis therapy.

Although future studies to investigate the associations
of ultra-processed food intake with its influence on the
microbiome, morbid obesity, and cancer incidences are war-
ranted, a recent study from the French NutriNet-Santé
cohort between 2009 and 2017 investigating 104,980 partic-
ipants, reported “a 10% increase in the proportion of ultra-
processed foods in the diet was associated with a statistically
significant increase of greater than 10% in risks of overall
and breast cancer ” [329].

Despite the need to be cautious in evaluating these find-
ings, they together with the extensive discussions published
here [111, 113, 144–150], provide evidence that a much
more nuanced view on carcinogenesis is needed. The six-
step sequence is much more plausible than a mono-causal
carcinogenesis paradigm. The assumptions that genetic

Figure 5. Prevention strategies and cancer burden in regard to homeostasis and the disruption of signaling homeostasis induced
crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”. Explanation numbers: A tumor nodule is reported to
be first detectable by X-ray imaging when it has 107 cells [330] which was earlier 108 cells [331]. The average number of cells in a tumor
when it is first palpable was reported to be 109 cells in 2002 [331] which approximately accounts for a tumor with 1g [332]. As it was
also reported to be 106 cells in 1943 [333], we decided to decrease this number for the illustration by 1 log only to 108 cells.
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alterations (somatic mutation theory, aneuploidy theory) or
cellular metabolism with a consequent energy switch
(Warburg theory) alone might explain the etiology of the
majority of cancers is not enough to explain cancer as a
disease.

Thus, we should not postulate that the majority of
cancers originate in genetics and certainly not causally by
somatic mutations [9, 113]. It has been previously pointed
out that “Imaging A World Without Cancer is clearly
a vision” and that “For its realization, a global personalized
and individualized anticancer strategy could be fundamental
as both could integrate patient- and tumor-associated
achievements in research in an adoptable and cost-sensitive
manner” [7]. As mentioned earlier “In order to meet the chal-
lenges in getting there, any newly proposed anticancer strat-
egy must integrate a personalized treatment outcome
approach” [7].

Figure 3 summarizes the cancer burden in regard to
homeostasis and the disruption of signaling homeostasis
induced crosstalk in the carcinogenesis paradigm “Episte-
mology of the origin of cancer”; here a tumor nodule is
reported to be first detectable by X-ray imaging when it
has 107 cells [330] which was earlier reported to be 108 cells
[331]. The average number of cells in a tumor when it is first
palpable was reported to be 109 cells in 2002 [331] which
approximately accounts for a tumor with 1g [332]. As it
was also reported to be 106 cells in 1943 [333], we decided
to decrease this number for the actual illustration by 1
log only to 108 cells.

By extension, we suggest to differentiate cancer research
into cause-based, personalized and individualized
approaches as well as in translational approaches (Fig. 4).
This would include differentiating primary prevention
against cancer development versus secondary and tertiary
preventive strategies to prevent progression of the disease
and to restore or maintain functionality and quality of life
(Fig. 5).

As reported recently “Although science belongs to no
one – and to everyone, property (science) obliges” and
“Our responsibility as scientists is to insure that the genera-
tions that follow us cannot write, Science and research,
especially within biotechnology and molecular
biology, promised so much and delivered so little”
[334]. This knowledge provides various opportunities for
science and research as well as for primary preventive inter-
ventions on the onset of cancer as a disease and, to mitigate
metastases.

With respect to the provided complex pre-clinical
in vitro and in vivo clinical and epidemiological evidence
provided within this Special Issue, the six-sequence carcino-
genesis paradigm cannot be denied. Our long cognition
journey was driven to understand this complicated interwo-
ven multi-step process to describe how a cancer cell devel-
ops. Truly, this is a huge challenge to connect and
overview the various signaling crosstalk on different levels
and without question, many questions remain to be
answered with additional experiments and new findings
elaborated. We are hopeful that our thinking and scientific
work stimulates further thinking in cancer and ultimately

leads to benefits for those who deserve it the most: cancer
patients and their relatives.

Nomenclature of abbreviations

5-HETE 5-Hydroxyeicosatetraenoic acid
12-HETE (5E,8Z,10Z,14Z)-12-hydroxyicosa-

5,8,10,14-tetraenoic acid
12(S)-HETE 12(steoreoisomer)-hydroxyeicosatetrae-

noic acid
12(R)-HETE 12(“R” stereoisomer)-hydroxyeicosatetrae-

noic acid
15-HETE 15-Hydroxyeicosatetraenoic acid, (5Z,8Z,

11Z,13E)-15-hydroxyicosa-5,8,11,13-tetra-
enoic acid

18F-5FU 18Fluor-labelled 5-fluorouracil
AA Arachidonic acid
AD Alzheimer’s disease
AGTR1 Angiotensin II receptor type 1, AT1-recep-

tor
Akt Protein kinase B (PKB)
pAkt Phosphorylated protein kinase B
ALA a-Linolenic acid, (9Z,12Z,15Z)-octadeca-

9,12,15-trienoic acid
ALDH1A1 Aldehyde dehydrogenase 1 family member

A1
AMP Adenosine 3’,5’-monophosphate
AMPK AMP-activated protein kinase
ANGII Angiotensin II
AP-2 Activating protein 2
APC Adenomatous polyposis coli
AS160 Akt substrate of 160 kDa
ATM ATM serine/threonine protein kinase
Bcl-2 B-cell lymphoma 2
BDPA Osbond acid, (All-Z)-4,7,10,13,16-docosa-

pentaenoic acid
Bim Bcl-2 interacting mediator of cell death
BPH Benign prostatic hyperplasia
BRCA Breast cancer type protein
CCL2 Chemokine (C-C motif) ligand 2
CD44 Cluster of differentiation 44
CHK2 Checkpoint kinase 2
Co-IP Co-immunoprecipitation
CRE cAMP response element
CREB cAMP response element (CRE)-binding

protein 1
c-Rel Proto-oncogene c-Rel
Cas9 CRISPR-associated protein 9
CDK5 Cyclin-dependent kinase 5, cell division

protein kinase 5
CRISPR Clustered regularly interspaced short

palindromic repeats
CyP40 Cyclophilin 40
Cx45 Connexin 45
DesA Bacterial desaturase
DGLA Dihomo gamma-linolenic acid
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DHA Docosahexaenoic acid, (4Z,7Z,10Z,13Z,
16Z,19Z)-docosa-4,7,10,13,16,19-hexae-
noic acid

DNA Deoxyribonucleic acid
DPA Docosapentaenoic acid, 7,10,13,16,19-doc-

osapentaenoic acid
DTA Docosatetranoic acid, (7Z,10Z,13Z,16Z)-

7,10,13,16-docosatetraenoic acid
DXM Dextromethorphan
E-Cadherin Epithelial cadherin 1, CAM 120/80
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
EMT Epithelial to mesenchymal transition
EPA Eicosapentaenoic acid, (5Z,8Z,11Z,14Z,

17Z)-eicosa-5,8,11,14,17-pentenoic acid
ERK Extracellular signal-regulated kinase
ESCC Esophageal squamous cell carcinoma
ETA Eicosatetraenoic acid, all-cis-8,11,14,17-

eicosatetraenoic acid
FA Fatty acids
FADS2 Fatty acid desaturase 2
FAK Focal adhesion kinase
FK506 Tacrolismus
FKBP51 Tacrolismus (FK506) binding protein 5
FKBP52 Tacrolismus (FK506) binding protein 4
GLUT-4 Glucose transporter type 4
GSK-3b Glycogen synthase kinase 3b
Hsp90 Heat shock protein 90
GAGA GAGA sequence
GATA GATA sequence
GFP+ Green fluorescent protein–labeled
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
high-LET High linear energy transfer
hMLH1 Human mutL homolog 1, colon cancer,

nonpolyposis type 2
HPP1 Hyperplastic polyposis 1
IKK1 Inhibitor of nuclear factor kappa-B kinase

1, inhibitor of nuclear factor kappa-B
kinase subunit alpha, IKK-a

IKK2 Inhibitor of nuclear factor kappa-B kinase
2, inhibitor of nuclear factor kappa-B
kinase subunit beta, IKK-b

IL-6 Interleukin 6
IL-1b Interleukin 1 beta
JNK c-Jun N-terminal kinase
LA Linoleic acid, cis, cis-9,12-octadecadienoic

acid
low-LET Low linear energy transfer
LOX Lysyl oxidase
LOXL1 Lysyl oxidase-like protein 1
LOXL2 Lysyl oxidase-like protein 2
LOXL3 Lysyl oxidase-like protein 3
LOXL4 Lysyl oxidase-like protein 4

LTA4 Leukotriene A4, 4-[(2S,3S)-3-[(1E,3E,5Z,
8Z)-tetradeca-1,3,5,8-tetraenyl]oxiran-2-yl]
butanoic acid

LTB4 Leukotriene B4, (5S,6Z,8E,10E,12R,14Z)-
5,12-dihydroxyicosa-6,8,10,14-tetraenoic
acid

LTC4 Leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6-
[(2R)-2-[[(4S)-4-amino-4-carboxybuta-
noyl]amino]-3-(carboxymethylamino)-3-
oxopropyl]sulfanyl-5-hydroxyicosa-
7,9,11,14-tetraenoic acid;

LTD4 Leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-
6-[(2R)-2-amino-3-(carboxymethylami-
no)-3-oxopropyl]sulfanyl-5-hydroxyicosa-
7,9,11,14-tetraenoic acid;

LTE4 Leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-
[(2R)-2-amino-2-carboxyethyl]sulfanyl-5-
hydroxyicosa-7,9,11,14-tetraenoic acid

LXs Lipoxins
LXA4 Lipoxin A4, 5S,6R,15S-trihydroxy-7E,9E,

11Z,13E-eicosatetraenoic acid
LXB4 Lipoxin B4, 5S,14R,15S-trihydroxy-6E,8Z,

10E,12E-eicosatetraenoic acid
MaR1 Maresin 1, (4Z,7R,8E,10E,12Z,14S,16Z,

19Z)-7,14-dihydroxydocosa-4,8,10,12,16,
19-hexaenoic acid

MaR2 Maresin 2, 13R,14S-diHDHA
MCS Multicellular spheroids
MIBP Muscle integrin binding protein
MMP-2 Matrix metalloproteinase-2, gelatinase A
MMP-9 Matrix metalloproteinase-9, gelatinase B
MRI Magnetic resonance imaging
mTOR Mechanistic target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
MUFA Mono-unsaturated fatty acids
Nanog Homeobox protein
NF-jB Nuclear factor kappa-light-chain-enhancer

of activated B cells
NMDA N-methyl-D-aspartate receptor
NF-Y Nuclear factor Y
NPD1 Neuroprotectin D1, protectin D1, (4Z,7Z,

10R,11E,13E,15Z,17S,19Z)-10,17-dihydro-
xydocosa-4,7,11,13,15,19-hexaenoic acid

Oct-4 Octamer-binding transcription factor 4
p14ARF Alternate reading frame tumor suppressor

protein
p16 Cyclin-dependent kinase inhibitor 2A,

multiple tumor suppressor 1, p16INK4A
p16INK4A Cyclin-dependent kinase inhibitor 2A,

multiple tumor suppressor 1, p16
p53 Tumor protein 53
p120 Catenin delta-1 is
PAX Paired-box genes
PAX6 Paired-box-gene 6, aniridia type II protein,

AN2, oculorhombin
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PCN Pre-cancerous niche
PD Paired domain
PET Positron emission tomography
PGG2 Prostaglandin G2, (Z)-7-[(1S,4R,5R,6R)-5-

[(E,3S)-3-hydroperoxyoct-1-enyl]-2,3-diox-
abicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid

PGH2 Prostaglandin H2, (Z)-7-[(1S,4R,5R,6R)-
5-[(E,3S)-3-hydroxyoct-1-enyl]-2,3-dioxa-
bicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid

PI3K Phosphoinositide 3-kinase
PP2 Protein phosphatase 2, PP2A
PP2A Protein phosphatase 2, PP2
PP5 Protein phosphatase 5
pPI3K Phosphorylated phosphoinositide 3-kinase
PPARa Peroxisome proliferator-activated recep-

tor-alpha
qSVA Quality surrogate variable analysis
RFX1 Regulatory factor X1
RVs Resolvins
RvD1 Resolvin D1, (4Z,7S,8R,9E,11E,13Z,15E,

17S,19Z)-7,8,17-trihydroxydocosa-4,9,11,
13,15,19-hexaenoic acid

RvD3 Resolvin D3, (4S,5E,7E,9E,13Z,15E,17R,
19Z)-4,11,17-trihydroxydocosa-5,7,9,13,
15,19-hexaenoic acid

RvD4 Resolvin D4, (4S,6E,8E,10E,13E,15Z,17S,
19Z)-4,5,17-trihydroxydocosa-6,8,10,13,
15,19-hexaenoic acid

RvD5 Resolvin D5, (5Z,7S,8E,10Z,13Z,15E,17S,
19Z)-7,17-dihydroxydocosa-5,8,10,13,15,
19-hexaenoic acid

RvD6 Resolvin D6, (4S,5E,7Z,10Z,13Z,15E,
17S,19Z)-4,17-dihydroxydocosa-5,7,10,13,
15,19-hexaenoic acid

SB-AC Small bowel adenocarcinoma
SCD1 stearoyl-CoA desaturase-1, D-9 desaturase

(D9D)
Snail Zinc finger protein SNAI1
Sox-2 Sex determining region Y (SRY)-box 2
SPARC Secreted protein acidic and rich in cysteine
SPMs Specialized pro-resolving lipid mediators
SREBP-1 Sterol regulatory element-binding protein 1
SRF Serum response factor
SRY Sex determining region Y
STAT3 Signal transducer and activator of tran-

scription 3
STAT6 Signal transducer and activator of tran-

scription 6
T3 Triiodothyronine
TbRI Transforming growth factor beta type I

receptor
TAA Thioacetamide
TAZ Transcriptional coactivator of YAP with

PDZ-binding motif
TCA Tricarboxylic acid
TGF-b1 Transforming growth factor beta 1

TGs Triglycerides
SMT Somatic mutation theory
VDR Vitamin D receptor
VSMC Vascular smooth muscle cell
x-3-PUFA n-3 polyunsaturated fatty acid, x-3
x-6-PUFA n-6 Polyunsaturated fatty acid, x-6
WES Whole exome sequencing
XP XERODERMA pigmentosum
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